Aligning aviation with the Paris Agreement: What's possible?

Dan Rutherford, Ph.D. 7 July 2022 ICCT webinar

Outline

- Background
- Study design
- Results
- Conclusions and policy implications
- Questions and discussion

Background

Aviation has a fossil fuel problem

Me flying to New Zealand from the UK with all my luggage.

https://twitter.com/kevpluck/status/1368788614709010432?s=20&t=Tqn8Wm_TSwNIMq3IrljZbA

...

Postcards from COP 21 (2015)

https://www.cleanenergywire.org/news/cop21-day-6-hard-work-ahead-more-finance-elephants-room

IMO leapfrogs ahead in 2018

@guilanpour

Aviation attempts a comeback

- Momentum is building for a "Paris moment" for aviation in Montreal this fall.
- A global aviation CO₂ target will unlock new investments and national policies for clean aircraft/fuels.
- Risks:
 - Questions about the achievability of net-zero pathways from some ICAO member states
 - Risk of overshoot, missing Paris targets even if 2050 net-zero is achieved
 - Aspirational targets not followed up by concrete measures
- ICCT's Vision 2050 aviation roadmap aims to mitigate these risks.

Date	Progress
Feb 2021	Europe's Destination 2050 net-zero roadmap
Mar 2021	Airlines for America commits to net-zero
Oct 2021	IATA adopts a global aviation industry net-zero goal
Nov 2021	COP 26 International Aviation Climate Ambition Coalition launched
Mar 2022	ICAO concludes that deep GHG cuts are feasible
June 2022	Vision 2050: Aligning Aviation with the Paris Agreement released
July 2022	ICAO High Level Climate Meeting
Sept/Oct 2022	ICAO 41st Assembly

Study Design

ICCT Vision 2050

- ICCT published Vision 2050 in September 2020
 - Strategy to decarbonize global transport by mid-century
 - Global aviation CO₂ could be cut to 300 Mt in 2050 from aircraft technology improvements, alternative fuels
- What is new in this report?
 - New technologies, notably hydrogen, and aggressive mitigation strategies like modal shift and formation flying
 - Partially integrated model (PACE) estimating fuel and carbon prices plus demand response
 - Comparison to other public decarbonization roadmaps

Research question

To what extent can various measures reduce cumulative CO₂ emissions from global aviation inline with 1.5°C, 1.75°C, and 2°C targets?

S0: Reference (business-as-usual)

S1: Action

S2: Transformation

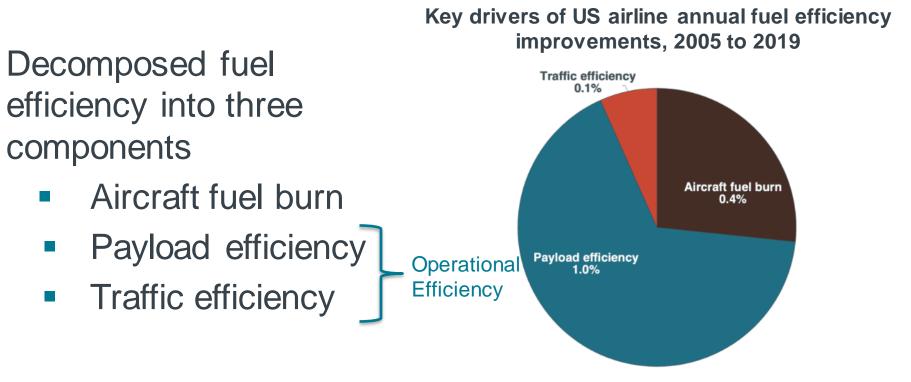
S3: Breakthrough

Increasing level of ambition

Key mitigation wedges / technology assumptions

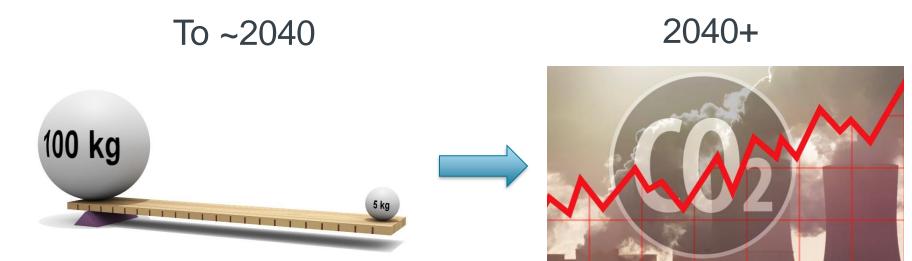
Our three modeling scenarios consider 6 important parameters:

- Aircraft technology
- Operations
- Sustainable aviation fuels (SAFs)
- Zero emission planes (ZEPs)
- Traffic
- Traffic Economic incentives


In-depth information on each of the modeling inputs can be found in the study on our website.

Demand change

Projection of Aviation Carbon Emissions (PACE) model



Better characterizing aviation fuel efficiency

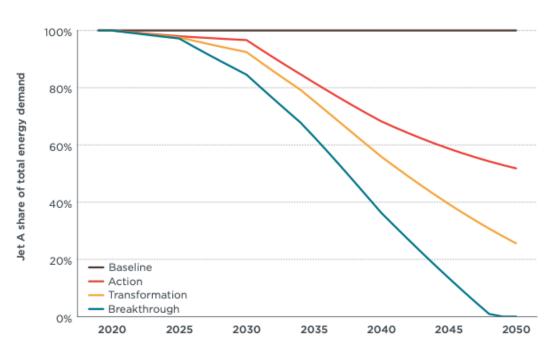
https://theicct.org/aviation-fuel-efficiency-jan22/

Modeling of future fuel costs

Jet A to SAF cross-subsidy via LCFS, SAF mandate, or ETS with revenue recycling

Fuel, carbon tax, or ETS set at marginal abatement costs.

Results



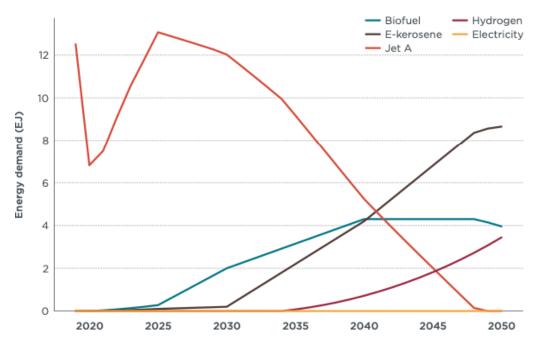
Jet A fuel share

Action: Jet A share of aviation energy almost halves by 2050

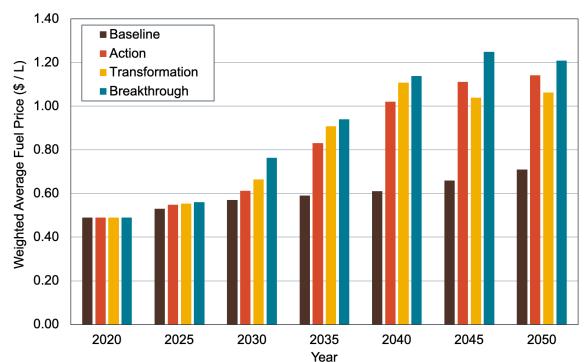
<u>Transformation</u>: share drops more than 75% as synthetic fuels come to dominate after 2040

<u>Breakthrough</u>: Jet A demand peaks in 2025, zeros out before mid-century

Energy demand – Breakthrough scenario


2019: nearly 12.5 EJ of energy was consumed, nearly all Jet A

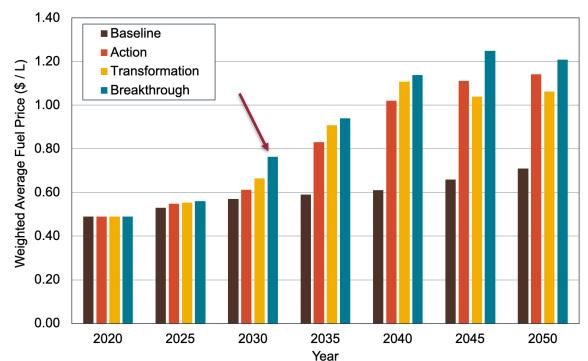
2025: peak Jet A demand


2030: 14.25 EJ demand, 85% Jet A

2038: Alt fuels overtake Jet A

2050: 16.3 EJ demand, 78% SAFs, 22% H₂

Estimated fuel prices


Action and Transformation: average fuel cost is 60-65% higher than Jet A in 2050

Breakthrough: average fuel cost is 70% higher than Jet A in 2050

Larger SAF volumes and greater use of direct air capture lead to higher fuel costs in Breakthrough

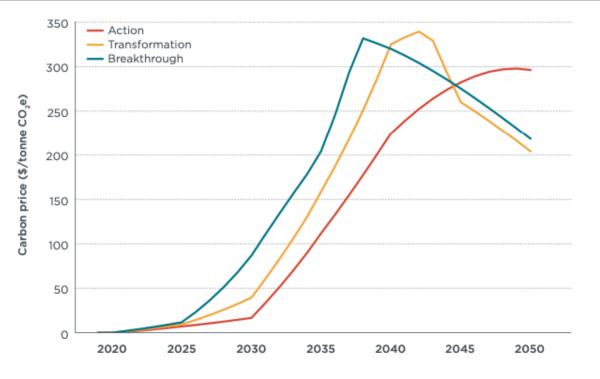
https://theicct.org/publication/global-aviation-vision-2050-align-aviation-paris-jun22/

Estimated fuel prices

Action and Transformation: average fuel cost is 60-65% higher than Jet A in 2050

Breakthrough: average fuel cost is 70% higher than Jet A in 2050

Larger SAF volumes and greater use of direct air capture lead to higher fuel costs in Breakthrough

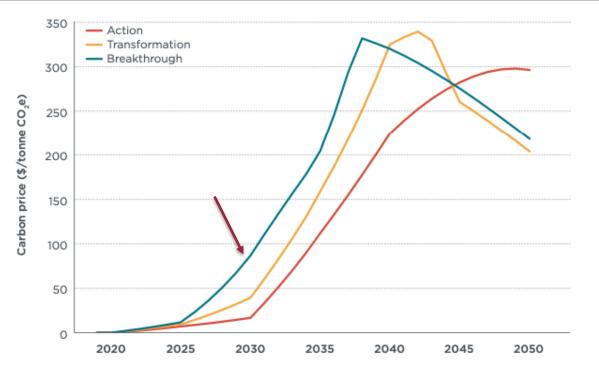

https://theicct.org/publication/global-aviation-vision-2050-align-aviation-paris-jun22/

Estimated carbon prices

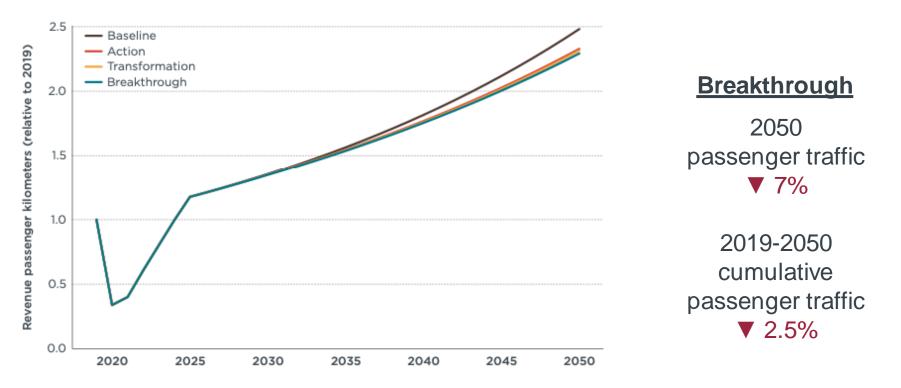
<u>Action</u> 2030: \$15 / tonne 2050: \$300 / tonne (peak)

<u>Transformation</u> 2030: \$40 / tonne 2042 (peak) 2050: \$200 / tonne

Breakthrough 2030: \$80 / tonne 2037 (peak) 2050: \$225 / tonne

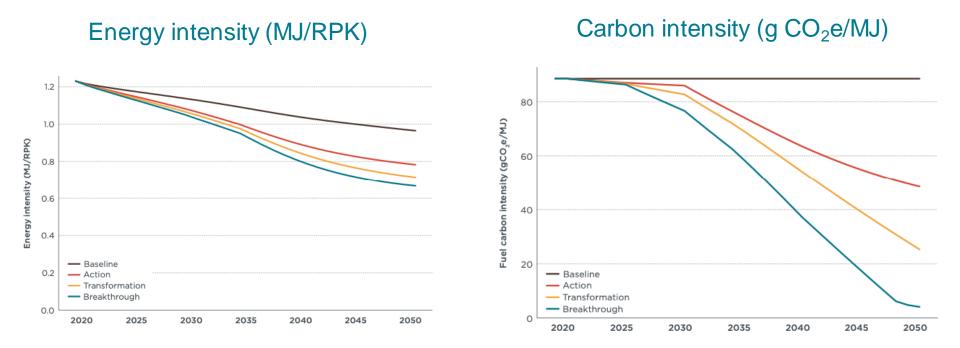


Estimated carbon prices


<u>Action</u> 2030: \$15 / tonne 2050: \$300 / tonne (peak)

<u>Transformation</u> 2030: \$40 / tonne 2042 (peak) 2050: \$200 / tonne

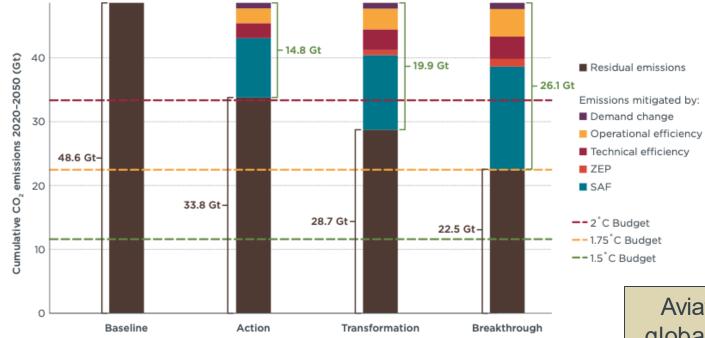
Breakthrough 2030: \$80 / tonne 2037 (peak) 2050: \$225 / tonne



Impact of fuel prices on passenger traffic

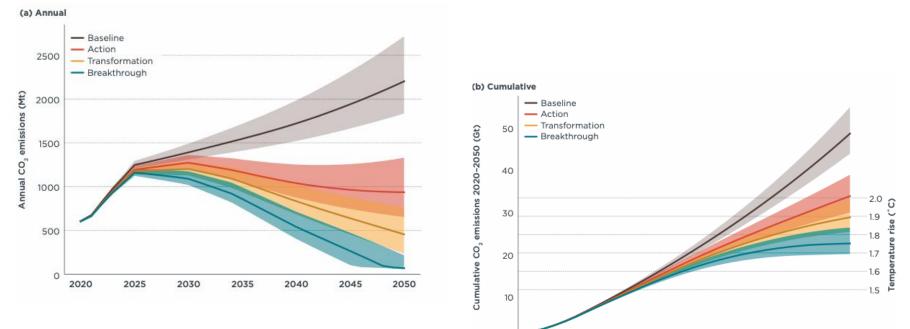
https://theicct.org/publication/global-aviation-vision-2050-align-aviation-paris-jun22/

Energy and carbon intensities – passengers


https://theicct.org/publication/global-aviation-vision-2050-align-aviation-paris-jun22/

Notes on cumulative emissions

- CO₂ emissions in this analysis are well-to-wake (WTW)
- Non-CO₂ climate impacts are not included
- IPCC global climate budget with temperature targets at 67% probability used
- Aviation's share of global carbon budget maintained at 2.9% fuel use (2.4%) and upstream fuel production (0.5%)

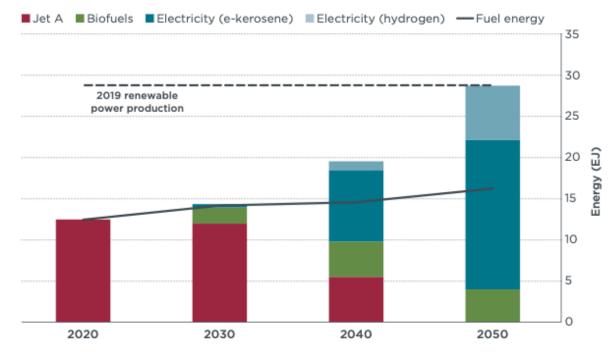

Global cumulative CO₂ emissions and mitigation

Aviation's share of global carbon budget maintained at 2.9%

Global CO₂ emissions by scenario and traffic assumptions

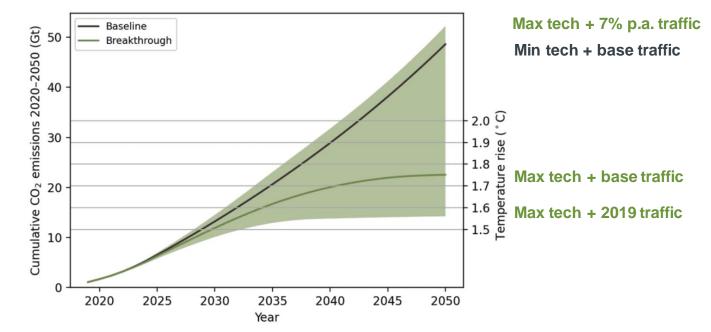
Global aviation CO₂ emissions by scenario and traffic forecast, 2020-2050

The solid line depicts the central traffic forecast; the shaded area depicts the range between the low and high forecasts.


Here's what it would take to create synthetic fuels...

Estimated electricity used to generate aviation fuels:

<u>2020</u>: 0 EJ <u>2050</u>: 25 EJ


Additional 12.5 EJ energy needed to generate hydrogen and carbon for synthetic aviation fuels

Fuel energy (line) and life-cycle energy (bar) by fuel type under the Breakthrough case

... and don't forget about traffic growth.

Cumulative global aviation CO₂ emissions by scenario and traffic forecast, 2019-2050

https://theicct.org/global-aviation-race-jun22/

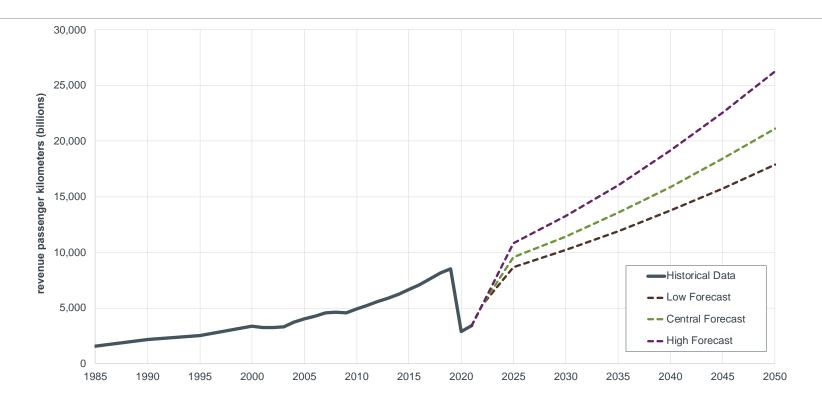
Conclusions and Policy Implications

Conclusions and policy implications

- Aligning aviation with the Paris Agreement's Below 2°C aspiration is possible but requires significant ambition and investment.
- Most ambitious scenarios are consistent with 1.75°C future where aviation doesn't increase its share of global carbon budget.
- To get to 1.5°C, direct atmospheric removals and/or significant direct curbs to traffic growth would be needed.
- CO₂ emissions from aircraft need to peak by 2030 at latest, and as soon as 2025, to align aviation with the Paris Agreement.
- Cumulative targets, rather than an absolute emissions goal for a given year, are recommended.

Thanks to the Brandon Graver, Sola Zheng, Jayant Mukhopadhaya, Erik Prong, Gary Gardner, and Zoë Bowen Smith!

Enter into the chat or email dan@theicct.org


Questions?

Supplemental Information

Traffic forecasts – passenger

Traffic forecasts

Low	Central	High
Passenger:	Passenger:	Passenger:
+2.4%	+3.0%	+3.7%
Freight:	Freight:	Freight:
+2.6%	+3.5%	+4.2%

per annum growth rates, RPK and RTK, 2019-2050

Aircraft technical efficiency

Scenario 1: Action	Scenario 2: Transformation	Scenario 3: Breakthrough
Passenger:	Passenger:	Passenger:
-1.08% 2019-2034	-1.08% 2019-2034	-1.08% 2019-2034
-1.15% 2035-2050	-1.83% 2035-2050	-2.16% 2035-2050
Freighter:	Freighter:	Freighter:
-1.00% 2019-2050	-1.25% 2019-2050	-1.50% 2019-2050

per annum energy reduction rates MJ/RPK for passenger aircraft MJ/RTK for freighter aircraft

Aircraft payload efficiency

Payload efficiency reflects how much of the maximum payload is being carried on each flight. The closer a passenger flight is to full capacity, the better its payload efficiency.

Scenario 1:	Scenario 2:	Scenario 3:
Action	Transformation	Breakthrough
-0.20%	-0.35%	-0.50%

per annum energy reduction rates, MJ/RPK, 2019-2050

Aircraft traffic efficiency

Scenario 1: Action	Scenario 2: Transformation	Scenario 3: Breakthrough
-0.1%	9-2050	
No formation flying		Formation flying: -0.2% in 2030 -0.7% in 2040 -1.9% in 2050

per annum energy reduction rates

Zero emission planes

Scenario 1: Action	Scenario 2: Transformation	Scenario 3: Breakthrough
Electric: None	Electric: 2030 EIS for commuter aircraft 50% of new aircraft, 2030 100% of new aircraft, 2050	
Hydrogen:	Hydrogen: 2035 EIS for regional & narrowbody	
None	12.5% of new aircraft, 2030 25% of new aircraft, 2050	12.5% of new aircraft, 2030 50% of new aircraft, 2050

Fuels (1/3)

Scenario 1:	Scenario 2:	Scenario 3:
Action	Transformation	Breakthrough
12 Mt biofuels, 2030 (3% of fuel use)	23 Mt biofuels, 2030 2 Mt e-fuels, 2050 (8% of fuel use)	46 Mt biofuels, 2030 5 Mt e-fuels, 2030 (17% of fuel use)
100 Mt biofuels, 2050	100 Mt biofuels, 2050	100 Mt biofuels, 2050
120 Mt e-fuels, 2050	150 Mt e-fuels, 2050	215 Mt e-fuels, 2050
(50% of fuel use)	(80% of fuel use)	(100% of fuel use)

Fuels (2/3)

Scenario 1:	Scenario 2:	Scenario 3:
Action	Transformation	Breakthrough
e-fuel carbon	e-fuel carbon	e-fuel carbon
(point / DAC)	(point / DAC)	(point / DAC)
2030: 100% / 0%	2030: 67% / 33%	2030: 67% / 33%
2040: 67% / 33%	2040: 58% / 42%	2040: 46% / 54%
2050: 67% / 33%	2050: 50% / 50%	2050: 25% / 75%
No hydrogen aircraft	Hydrogen (blue/green) 2030: 75% / 25% 2040: 50% / 50% 2050: 0% / 100%	Hydrogen (blue/green) 2030: 50% / 50% 2040: 33% / 67% 2050: 0% / 100%

Fuels (3/3)

Scenario 1:	Scenario 2:	Scenario 3:
Action	Transformation	Breakthrough
Average costs	Average costs	Average costs
(biofuel / e-fuels, \$/L)	(biofuel / e-fuels, \$/L)	(biofuel / e-fuels, \$/L)
2030: 1.81 / 1.79	2030: 1.81 / 2.00	2030: 1.81 / 2.00
2040: 1.98 / 1.59	2040: 1.98 / 1.65	2040: 1.36 / 1.72
2050: 2.03 / 1.26	2050: 1.40 / 1.36	2050: 1.40 / 1.52

Modal shift

Scenario 1: Action	Scenario 2: Transformation	Scenario 3: Breakthrough
Domestic and intra-European routes of less than 750 km		
Number of passengers greater than 100,000 annually		
20% traffic shift from air to rail, starting in 2030		

Panel of Experts

As part of this work, we established a panel of experts to review our assumptions and inputs related to carbon reductions.

- Boeing: Bryan Yutko
- CE Delft: Stefan Grebe
- EasyJet plc: Lahiru Ranasinghe
- International Energy Agency: Praveen Bains
- NATS: Jarlath Malloy
- SkyNRG: David Dweck and Amy Malaki
- SVD Consulting: Susan van Dyk
- United Airlines: Aaron Robinson

Modeling Comparison: ICCT vs ATAG

	This analysis: Breakthroughª	Waypoint 2050: Scenario 1⁵
2050 annual emissions	70 Mt	With offsets: 0 Mt Without offsets: 140 Mt
2050 energy use	16 EJ	25 EJ
Total reduction from Baseline, 2050 annual emissions	97%	With offsets: 100% Without offsets: 93%
2020-2050 cumulative emissions	22.7 Gt	With offsets: 19.6 Gt
Cumulative emissions temperature pathway	1.75°C	With offsets: 1.78°C (ICCT estimate)
Share of emission reductions, 2050	Technology: 18% Operations: 17% Fuels: 62% Demand change: 4%	Technology: 22% Operations: 10% Fuels: 61% Offsets: 7%
Zero-emission plane energy share, 2050	Hydrogen: 22% Electricity: 0.01%	Hydrogen: 20% Electricity: 2%

[a] WTW basis. [b] Modified TTW basis.